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ON AGE DEFENDENT BRANCHING PROCESSES

by

Howard Weiner

INTRODUCTION

This paper deals with asymptotic properties of various models of
age-dependent branching processes, relying heavily on Harris [3].

Part I considers cell growth 1in which a cell proceeds in a sequen-
tial manner through n independent states, state R with its life dis-
tribution Fp, B=1,2,...,n. At the end of mitosis, the nl gtate, the
cell divides into similar cells, the number of which is governed by a
generating function h, independent of the time and other cells of the
" process.

Let Z(t) be the number of cells at t, and ZR(t), R=1,2,...,n,
be the number of cells in state R at t. For increasing cell popula-
tions, that is, h'(l) = m > 1, we treat the following topics, (t-w
throughout).

(1) E[z(t)] and Var[z(t)]
(2) forward, backward, and total times: Given that a cell is in
the R state at t, to find

(a) the distribution of its time to reach the end of that sztate,

(b) the distribution of the time since it entered that state, and

(¢) the total time it will have spent in that state, respectively.

(3) asymptotic fraction of cells in state R[= I%J and the relation

between Eh and E[ZR(t)].



A variation of the above model treats cell growth in which the cell
proceeds from state to state according to & general semi-Markov process
until the mitotic state is completed, when division into similar cells
in accord with h occurs.

We treat the > state semi-Markov case in detall to obtain

(1) the equivalent life distribution G of a cell,
(2) asymptotic fraction of cells in a state,
(3) forward, backward, and total times in a state.

For the general n-state semi-Markov case, expressions for (2) and
(3) above are found, and it is shown that as h'(1) = md 1, that the
asymptotic fraction of cells in a state approaches a simple limiting
form which agrees with a result of Smith [3].

For both the sequence of states and general semi-Markov model, the

convergence of

a non-degenerate random variable, in quadratic mean is discussed.
The correlstions

lim p(W(t), W(t)) = p(Wo, W) =1,
t— o

R,5 =1,2,...,n, and Wﬁ = Wé a.e. Moments of W= E% may be easily
obtained.

Part II considers the random variable N(t) = the total number of
births by t in a simple age dependent branching process for m > 1.

The following topics are treated for t large:



(1) E[N(£)] and Var[N(t}]

(2) -Wé(t) =3 g: —-)W{) , & non-degenerate random variable, in

quadratic mean.

(3) Let 2Z(t) = number of cells at t.

From [3],

ozt
Wl(t) = iTé'(%ﬂ —#, in quadratic mean .

It 1s shown that the correlations satisfy
Um p(H (%), #(8)) = oW, ) =1

and that WO = 'Wl 8.€.

(4) The results for E[N(t)] are checked with the corresponding
discrete case by matrix methods.

(5) For the case m < 1, N(t) - N a.e. Moments of N may be
calculated.

(6) For m=1 and m < 1, moments of N(t) are discussed for both
discrete and continuous time.

Part IIT treats the case of two types of cells, of which only one
type mey divide while the other either asccumulates or is eventually
absorbed in the medium. An example of this is the production of stem
cells and red blood cells from parent stem cells. Two related models

"reducible case". For an outline

are consldered, both examples of the
of the irredveible case, see Snow [8]. Increasing cell populations

are consldered.



A binary fission case of each model may be represented schematically
tc indicate the various combinations of cell births with corresponding
probabilities, where type 2 represents the proliferating, and type 1

the non~proliferating cell.

Model I
2 2
D 2pq Q
where p + q = 1.
Model II
D _ q

where p + q = 1,

Let Zi(t) number of cells of type 1 at t, i=1,2.

]

i}

Ni(t) total number of births of type 1 by t.
The following toplcs are treated for t large:
(1) means and second moments of Zi(t)’ Ni(t), 1=1,2.
(2) Results for the means in (1) are compared with the discrete case

by matrix methods, and a comperison is made with results of Snow [8].



(3)

2, (4)

Wi(t) = - W, in quadratic mean, 1<1,2
E[2, (¢)]
N, (t)
Woi(t) = - W, in quadvatic mean, i=1,2,
E[N, (t)]

(4) The 1imits of the pairwise correlations, as t —w, of Wi(t),

Wé(t), W&l(t), Wba(t) are respectively equal to the corresponding

pairwise correlations among Wi, Wé, Wbl’ WoE’ and are all equal to

1,

and W, =W

=W

=W o2

ol a.e.



PART I - MULTI-STATE CELLS

1.1 Seguence of States.

A cell exhibits growth and division into other cells according to
the scheme to be described.

The cell enters state 1, for which it remains a time which is a
random variable Xl with distribution function Fl, then proceeds to

state 2, with distribution function F and 80 on until it completes

2’
the n'™ state of growth, the mitotic state, after which it divides.

The overall life distribution of the cell is

G = Fl * F2 R S Fn .

The cell divides intc k other cells with probabillity Py
k=0,1,2,... each with independent, identically distributed growth

-pattern as the parent cell, and independent of each other.

< k
Define his) = Y s -
k=0
Schematically:
I i { (
1 T
Xi Xé . . Xh

A brief treatment of the two-state case is given in [3], Ch. 6,

sect. 26, where a formule for the limiting mitotic index, which is the
limiting fraction of cells in mitosis, is given.
As sn example, certain normally proliferating cells pass through

four states to division, called the G., S, G and mitotic state in

1 27
that order. ZEach corresponds to a certain condition of the cell and has



a certaln sensitivity to radiastion. For example, the S state is the
DNA synthesizing state, and it along with the mitotic state 1s more sen-
sltive to radistion than either the Gl or G2 which are called rest-
ing states. The results of this paper, especially part I may aid in
the computetion of the fraction of cells heavlily demaged by radiation.

See Stohlman [9].

1.2 E[z(t)], var[z(t)].

To discuss cell behavior, it 1s convenlent to introduce the gen-
erating function of cell life.

Definition. Let 2Z(t) denote the number of cells at time t,
starting with one cell at t = 0.

o
Definition. F(s,t) = 5 P[Z(t) = k]sk .
k=0

We have [3] (Ch. 6, sect. 7) the relation

t
P(s,t) = s{1~G(t)) +f h(F(s,t-u)) dG(u)
0
n(t) = E[z(t)] = E%éﬂ a1
t
n(t) = 1-6(%) + mj m(t-u} dg(u) .
0

We assume m = h'(1) > 1, h"(1) <. Define @ > O by the equation

fg e" % ag(u) = L

e By lemma 1 of the appendix, as t —eo,

-

fw e %% [1-¢(u)] du
0

eat
o _au

mf ue ac(u)
O

m(t) ~




or

m(t) ~ m;l e - noeat .
o f ue” ™ ag(u)
0

A further result has ([3] Ch. 6, sect. 19) for t —w,

z(t) ~W noeat

where W dis a random variable such that

@) [ e"2%% ag(u)-1

® oo
1-m f e M ag(u)
' 0

To find Var[Z{t)], note

2
Var[z{t)] = 3 F(s,t)

2
-m" (%)
852

s=1

and using theorem 18.1 of [3], Ch. 6, we obtain, as might be expected,

Var 2(t) ~ aa(W) ngeeab .

1.3 Forward, backward and total times.

1l.%a Total cell.

The total backward time is the distribution of time the cell has
been living until t, given that it is alive at the present time ¢t.
Let A(x) = distribution function of the backward time. Then ([3],

Ch. 6, sect. 24)



¥ oot [1-G(t)] dt
A) = =3 :

J e"® [1-g(t)] at
0

We may find the forward time distribution, denoted by B(x), for

the total cell by using A(x).

Let
PB(t,x) = P [cell will die by age t+x|age is now t]
PB(t,x) _ G(t+x) - G(t) )
1-G(t)
We then have
2 ot
- f e [G{t+x) ~ o(t)]at
B(x) = f Py (t,x) dA(t) = == :
© j e [1-a(t) Jat
0

Denote the total time distribution for the entire cell life by C(x).

Pc(t,x) = Plcell will die by age x|age is now t] .

Gix) - Gt : -
Pc(t,X) = 1-G 't( 2 x2t; Pc(t,X) =0, t>x.

o fx &% [a(x) - a(t)lat
0
C(x) =f P.(t,x) dA(t) = _ .

0 j "ot [1-G(t) Jat
0

Note A{x) % B(x) ;LC(x).



1.3b Fach state.
Given that the cell proceeds sequentially through n states hefore
mitosls, with corresponding distribution functions Fl, Fa, . "’Fn'

As before, G = Fl * F2 Horaek Fn end @ 1is such that

Blr

j T o aclu) == .
0

To £ind Al(x), the backward time in state 1, we proceed as in
Theorem 24.1 of [3], Ch. 6.

the number of cells at t 1n state 1.

H

Denote Z; (t)

Zl(t:x)

18 <x. Then if F,(s,t) = J§='_O P(z, (%) = j]&’

the number of cells at t i1n state 1 whose age

Fy(e,x,t) = § BlZ (%) = 3] 67
3=0

we obtain

t
Fl(S,'t) = [l-Fl(t)]s + Fl(’b) - G(t) +~[O h(Fl(s,t-u)) ac(u)

and
t
Bz, (8)] = m (£) = 1-F(5) + m jo my (4-u) a6(u)
Fl(s,x,t) = [l-Fl(t)](sJ(x-t) + 1-J(x-t)] + Fl(t) - G(%)
t
" jo h(F, (s,%,t-0)) a6(u)

1, r>0
where J(r) = { -

0, r <0

t
E[Zl(t,x)] = ml(t,x) = [l-Fl(t)] J(x-t) + mfo ml(x,t-u)dG(u).

10



Solving for ml(t,x) and ml(t) for t large by lemma 1 of

the appendix,

X
=qt.
ml(t,x) JO e [l-Fl(t) ]dt

EAC R S '

et [1-F, () ]at

0

To find B,(x), the forward time in state 1, we use Al(x) as
done before.

Let PlB(t,x) = P[cell will leave state 1 by age t+x|age in state
1is t]

P, (t+x) - F, (¢)
PlB(‘b,x) = l-F?(‘t) -

. wa o~ [Fl(t+x) - Fl(t)]dt
B, (x) =j; P, (t,x) dA, (t) = 0 )

e ot [1-F, (t) Jat

0

To obtain Cl(x), the "total time" in state 1, define

Plc(t,x) = Plcell will leave state 1 by age x|age in state 1 is t].
Plc(‘t,x) = l—Fl(t) ; x>t and Plc(t,x) =0, x<t
X
- j e~ [Fl(x) - Fl(t)] at
_Jo
Cl(x) _-/; Pic(t,x) dAl(t) = .

" [1-F, (t) Jat
0

Let Ae(x) be the backward time in state 2.

11



Dencte by Zg(t,x) the number of cells in state 2 at time t whose

age 18 <x.

Since
L) [T anxy)
PIX, + X, >¢t; t>X > tex] = aF, (x aF,(x
Lt¥z 2 px DL Joy 20
and
PIX, + X, > ¢; £ > X1 =F(t) -F x Fy(t) ,
defining
Fols,t) = 3 Plz,(t) = §ls”
J=0
Fy(s,%,t) = jzo P[Ze(t,x) = j]s'j
we obtain
Fp(s,t) = s[F (£)-F) x Fy(t)] + 1-G(t)-[F, (£)-F; = F,(t)]
t
+ f n(Ey(s,-u)) aG(u)
0
and
t o0
Fo(s,x,t) = sl drF, (x,) dFy(x5)] + 1-G(t)- [f dF, (x; ) " 5(%5) ]
t-x t- -Xy t-x t-x

t
+jo h(Fz(s,x,t-u)) dac(u)

BFE(s,t)
m.?.(t) = E[Ze(t)] = ——

aFg(ij:t)
my (t,%) = E[Zy(t,%)] = g

s=1

s=1

12



Using lemms 1 of the appendix, for t —«, we find that

f e % (£)-F » Fp(t)1at +jx '°‘t[ dF (x )J 5 (%) 1at

jo e F (8)-F, x Fa(t)]dt

To obtain Ba(x) » the forward time in state 2, define

PEB(t,x) Plt+x > X. + x >t x1 < t]

1

[ ar (xl)ft+x'x ¥, (xy) -

ft+x-x
o f [f ar, t ar, (x,)lat
B, (x) =fo Pop(t,%)dA,(t) = X .
[F (t)-F * Fy (t)lat

]

PEB(t,x)

Then

O

S8imilarly, for CE(X) s the total time in state 2, define

l<1-,], x>t Pec(t,x) =0, t > x.

Pac(t,x) = Plx > L+X% >t X
rt £ X=Xy
PEC(t’x) =J,‘ 4F (xl)f lap (x2) » Xt 3 2C(t,x) =0, t>x

0 xl

~ X st £ X=X
J e~ j aF, (x, ) ldFE(xe)]dt
0 0 t=x

* gt
. e [Fl(t)-Fl * Fe(t)]dt

e, (x) = j; P (t,%)a8, (8) =

15



In general, to find Ak(x), Bk(x), and Ck(x), k > 2, define

Gk(x) =F) * Fy weeen Fk(x)’ then we use the same arguments as for

. Ay (x), B, (x), Co(x), vhere Gy corresponds to F, and R to F,.
Thus we obtain, for k > 2

X -t ® et t oo
fo e [G_,(t)-G (t)]at +f e [ ft -xde'l(xl)L _ijlz(xg)Jdt

X

A (x) = —
fo e"®lg_, (8)-6, (¢) lat

oo t t+x-x
-at 1
(a6 y0) [ e ) e
fo e 5 Geq(xy oox, k%o

0 =f°° o[

0]

& _; (£)-G (t)Jat

X _ot t X=X,
L e fo a6, (x,) ft . aF, (x,)lat

G (x) = — .
fo e ®a_, (6)-G, (¢) Jat

It is easily shown that all of the above distributions may be
derived solely by means of generating functions following theorem 24,1
of ([3], Ch. 6), as was done above in obtaining .Al(x) and Ae(x).

Further, it is again possible to derive all of the above distri-
butions very quickly by heuristic arguments similar to one due to

R.A. Fisher. See ([3], Ch. 6, sect. 24).

1.4 Asymptotic fraction of cells in each state.

As before, we consider cell growth through a sequence of states as

defined above, making the same assumptions and using the same notation.

14



Definition: PR(y) = P[cell of age y 1s in state R], R=1,2,...,n.

Definition: PR = asymptotic fraction of cells in state R.

For the case n =2, P, is obtained in [3], Ch. 6, sect. 26. 1In

2
general, Pn 1s called the mitotic index. We have

R-1 R n
Pey) =PlY X, <y; X 27| X X >v].
1=1 1=1 =1

As before, denoting Qk(x) =F, #F, ¥eee% Fk(x) and

1l 2
G(x) = F, % Fy %.oox F we may write

Gy, (¥} = Go(y)
R-1 R
RO = =1

1

B= [ mwion) <83 [ e, 6,601 Vay

1.5 E[ZR(t)] s Var[ZR(t)].

We now obtain the asymptotic mean and variance of the number of
cells in each state.

Let ZR(t) = number of cells in state R at t.

<]

Define FR(s,t) = jég P[ZR(t) = J]BJ.

By the arguments in the previous section, we obtain

Fo(s,t) = slGp (£)-G(t)) + 1-6(t)-[op_; (£)-Gp(t)]

t
+f h(FR(s,t-u))dG(u) .
G

15



oF.(s,t)
From mg(t) = E[z-(t)] = —REE— g1 8nd using lemma 1 of appendix

2 for t large,

. .
=ct
f e [a (5)-G(t)]at
R-1 R
mR(t)~ Ow eQﬂ:=n.Reoct .

mj te"%ag(t)

. JO _J

3%, (s,t) 5
Also, since Var[ZR(t)] = .- 8=1-[mR(t)] , for t large,

using the method of lemma 18.1 of [3], Ch. 6, we obtain

—

(1" (1)+m) fo me-ade(u)-l

l-m f e-2au ac(u)
0

2t
e

Va.r[ZR(t)] ~ ni

As noted in [3], Ch. 6, sect. 18, the denominator is positive since

'(oo - - -] -
] eaat ac(t) <j eocth(t) =2,
2o 0 n
From the first section of thisg paper,
Ez(t)] = m(t) = 2 e .

oo
ozm2 f ue'w‘dG(u)
0

Hence, as we may have expected, for t large,

m (t)
m(t) PR '

16



The sbove quantities are of little practical interest in the cases
m=l and m < 1, since it is known that the populations die out with

probebility one in those cases. See [3], Ch. 6, sects. 1-1k.

1.6 Cell growth by states according to a semi-Markov process.

We consider the following model. A cell evolves via states to
mitosis, but instead of proceéding sequentially from one intermediate
gtate to the next in a deterministic way, instead the state selection
proceeds according to a Markov chaln. Specifically, given n states,
including the mitotic state (denoted by the ntB state), assume there
exists an n X n irreducible positive recurrent transition prcbability
matrix P, with zero trace, giving the probabilities of transition from
one state to the next during the growth of a cell. As soon as the nth,
or mitotic state, is completed, the cell divides intoc r cells with
probability P., r=0,1,2,... each with a growth pattern independent
and identically distributed as the parent cell, and independent of
each other. Define

o0
h(s) = z P}sr ,hi(l)=m>1.
r=0

The time spent in the kB state, k=1,2,...,n given that the
next transition is into state J, for j=1,2,...,n and k £ J, is
& random variable ij with non-lattice distribution function de,
ij(o) = 0, dependent on the_kth and jtB states, but otherwise inde-
pendent of the state of the system.

At present, thereappears to be no physical example of this process

in cell growth, but a possible interpretation is that a cell which

7



evolves from state to state selects the most "accessible" state at each
transition, where "accessibility" may be considered to be determined in
accord with a Markov process.

We begin with & study of the 3-state semi-Markov model. For this
case we compute the equivalent life distribution G(t) of the cell,
the forward, backward, and total time distributions for & particular
state, and the asymptotic pi'obability of a cell being in a given state
[asymptotic fraction of the culture in a given state]. Further, we let

mll, or equivalently, «JO0, for « defined by

j: e % %6(uw) =% ,

and compare our results with those of Smith [7].
To generalize, for the case of n states, we compute the asympto-~
tic fraction of cells in a given state as Qi 0, and agein compare with

Smith [7].

1.7 Three state semi~Markov model.

o & b
Lot P=cod), a+b = c+d = prg = 1
P g o a,b,c,d4,p,q4 > 0
Schematically,
1
p)
2
41 | Lt | | 1,2
2112 T1Tl271T1T1T21T173 v
1

18



State "3" is the mitotic state in the figure. Deline

09 k=l,2,3
- -ty
By () _jo e “aF,(y) 3=1,2,5 and J £ k.

1.7a Equivalent life.

A consideration of the various ways in which a cell may progress
through the mitotic state yields the following Laplace-Stieltjes trans-

form for the equivalent life distribution G.

dg = (B0 45+ pa 45652+ acd gy éy ot ad 6o5) (P 45+ a4 ¢5p) Zo(a0¢219512)n
n=

or

G
1-ac #5194,

1.7b Fraction of cells per state, Ih.

Let
Pi = asymptotic fraction of cells in state 1

q,(y) = Plcell in state 1 at age yJ.
Since the equivalent age distribution of the cell, A(x), is

f xe"""[:L-G(t) lat
0

o]

A(x) =

2

e Ot [1-G(t))at
o)

we see that ([3], Ch. 6, sect. 2€)

j oc’ql(y)eﬂ')l“’ody

P 0

1==5
j [1-6(y) 1 Hay
0

19



where > 0 i1s defined by
-]
f e Mag(y) = £,
o m

To compute ql(y) , write
ql(y) =pP[cell in state 1 at age y|cell born into state i}

+ qP' [cell in state 1 at age y|cell born into state 2],

s0 that

00

6, (¥) =p nZO (ac)n[Flg*Fel)(n) (Y)-(FIE*FEI)(n)*(aF12+bF15) (¥)]

roe 3 (ac)n[(Fle*F21)(n)*FEl(y)-(Fla*FQl)(n)*Fel*(aF12+bF15)(y)]
n=

where F(n) is the n™® convolution of Fij’ i=1,2, and J=1,2, JAL,

iJ
and
1 ¢t >0
F§g>(g) = U(s) ={ B
0 £E<O
We have
srfq (@)

® ay. i
(y)e iy =
[ql\:,)e dy = —=

-

(-]

where ¢q (o) = f e—aydql(y), the laplace-Stieltjes transform of
1 0]

ql(y) evaluated at q.

Taking Laplace-Stieltjes transforms evaluated at ¢, using the

previous expression for ql(y) ,

20



b () =2 ngo(ac)nuleszsal)nn-<a¢12+ vy ;) 1(c)

vae T )y (o) e (et )] (@)
n=

b, [1-(a¢12+ v, ) (a)}[p + e gy () ]

o a l-ac ¢’12Ta)g§21(a7
Since

1-¢.(c) o

g = Jo [1-G(y)le Hay = %‘[l- &]

¢q1(a) [1—(a¢12+b¢15) (a)][ » + qchy, (0) ]
b . O . a 1-ac gy,(Q)p, ()
1= IJGIO‘) - 1 [1- l]

a 0 m

For comparison with ry to be defined, we express ¢G in terms

of ¢1J, 1=1,2,3, j=1,2,3, if j. Then

[1'(a¢i2+b¢i5)(a)][P v 0o (oﬂ]
21

&4
1-acd, ,(a)d,) (a)- (pbd, 5 () +pdag, ,(a)d, 5 (@) +acbp,, ()4, 5 () +add,5(a))

(28151 (@)+adzp (@)

P -

1l.7c Comperison with a result of Smith.

To compare this with a result by Smith [7], we compute
) oy
[ netar ey )17 ay
r. =

1~ o
f [1-R, (y) Je™™ay
0

21



where Rl (y) 1s the recurrence time distribution of the event:

[cell branch enters state 1]. That is, we follow any cell branch, or
strand, until state 1 is re-entered for the first time in order to
compute Rl. We mention that an unsolved problem is to follow all cell
branches until state 1 i1is re-entered for the first time among all

branches, and to compute a recurrence time distribution ﬁ(y) for this

case.

1- (a¢12+b¢13) (a)

Q
1T T-#, (@

1

a

vhere

acd, ofo1+ 8dPd) pPoxfa) + DACH) h5o8p) *+ OIFy 585
1 1'qd¢2—3¢32

“?e\
i

1- (ag #09) 5) (0)
o

i l'q.dd23¢52" (a°¢12¢21+adp¢12¢23¢51+ ch¢l5d32¢21+ bpdl 3¢ 51) (:1)
CZ( 1- qd¢2 3?%2 )

Ty

In general, for o >0, B # r,, and this definition of recur-
rence time distribution R, Smith's theorem 5 [7] can not be extended
to this semi-Markov process in this way.

We may let a0 1in the expressions for Pl and r.

Setting «a = 0, we see that

'Pl=rl’
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yielding Smith's result in the limit as md 1. Further, for the case

a =0,
2 Ty
- fo mql(y)dy ) (O:E;L(c:)”l ) :5 by
f [1-G(y) lay f udG(u) f udG(u)
0 0 0
where

3 o0
P-j = i%l p,ji jo udF,ji(u) 3 J=l)2,5, and
1£)

3
N = (nl,ﬁa,n5) , iziﬁi =1, n, >0, 1=1,2,3, with the relation
n=xnP, in this case

(ﬁl’ ﬂ2)“5) = (ﬂl)ﬂ23ﬁ5) (

\

It may be shown by a general theorem to follow in a later section, that

0 s
c O
P g

oy

for a=0,
Tl
P = 1-1

1 “1”1 + :rr2p.2 + 1[3;13

To complete the discussion of the 3-state semi-Markov model, we
give the backward, forward, and total time distributions of state 2.
There are computed using the previously derived formulas for the dis-
tributions in the sequence of states model and the law of conditional
probability. We sum ur the backward, forward, and total time distri-
butions respectively, each corresponding to a possible path ending in
state 2, with each weighted by the asymptotic probability or frequency
of that path, given that the cell ends up in state 2. Analogous expres-

sions hold for state 1.

25



l.7d Forward, backward, and total times.

Let Pé

Define, for n=0,1,2,...

= asymptotic fraction of cells in state 2.

8 (v) = pa(ca)”[Fy%(F) ,%F,, ) (=) (y)-Fpx(Fy o¥Fp) (e eF,) +aF)5) (y) ]

so that

cell of gge y is in
Plgtate 2 for nth time

cell born in]

a (y) = state 1

n

and

[+2]
-
f a (y)e" ey
0

8 =T
] [1-G(y) Je" Py
0

cell is in

cell born
=P state 2 for nth time

in state 1

Define, for n=0,1,2,...
b () = alae) (7 o) ™ ()= (B 58, ) (M atemy v, ) ()]

so that

cell of age y is in

bn(Y) = P[state 2 for nth time state 2

cell born in]

and

[+
j b (y)e™Hay
N 0

n n -]
fo [1-G(y) 1e™*Y ay

2



Then

We then have

A, (x)= %—

ﬁMs

n

OO
=t
e [F
JRRY
Y x
Jf e
0

cell is in

th

bn = P[state 2 for n°" time|in state

cell born
2]

2 (a +b ) .
n=0

~
| e Ry ) () e e P (e vy ) (0 e

+Fps)

"ot [ (n)
+fx e 1 [t_xd[FlE*(Fﬂ*FlE) )

d[cF, | *dF 1(x,) Jat
.j;_XI 23 2)] ]

() (e)-F, 5 (¥

*(Foy *F 12*Foy

10) ) Px(ery var,) (6) Jat

-aL(

e

I " {(F)*F 21)(n)(t) (F)*F 21)(n) (cF,

7,0 %) (6)- (7 3,0 ) P x(er, vary ) (4) Tae

12 21 12 21

[f al(®, 77, ) ™ 1x, )f LRy 1m0

3) (t)lat

_foo "
e
0

jc; e [, ,*(F) ,¥Fp ) (=) (£)-Fy5

—

t (n) t+x-x
[ J; d[(Flz*le) *Fle](xl) L x, d[cF 1aF, ](xa)]dt

12+F21)(n) (cF, dF23)(t)]dt

|
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_[me-at[(c]? +dF23)(t+x)-(cF21+dF23)(t)]d‘b
0

b
PR
P 0
2 ] e-at[U(t)-(cF *dF, 3)(t)]dt
0
-ct (n) t+x-xl 7]
j [fd[(F12 Foy) o 1(xg) dleFyy +aF,, 1 (x,) lat
0 t=-
'E 2 s
2n=1" [° -at e (D) n),
i fo e LR o Fyy) T (8)- (P ¥y ) ¥ (eFpy +aF ) (6) Tat
where
1, t>0
U(t) = { .
0, t <0
B X t X=X
j e % f d[(FEI*Fla)(n)*Flg](xl)j ld[cF ,*+dF, ](x )lat
1 ) 0] 0 t-xl
Cy{x)=5 Ya
R = N T o # (B4, ) Px(er, 4, ) (8) Ja
foe 12" (F1p7Fo t 12°Foy cF, o3/ (L) ]1dt
f ~o cF +dF )(x) (cF21+dF25)(t)]d"
O
N
2 fo ™% [U(t)-(cF,y +aFy5) () Jat
r X2 1
,[ [J( af(r Flo 21)(n)](xl)/ 1d[cF 1+4F, ](x ) jat
o0 t
+'%T’ S:bn !
2 n=1

We return to the discussion of the asymptotic fraction of cells in

j U ) ) (0)- By ) Px(emy,

+dF25)(t) lat

a state, but this time consider the semi-Markov case for an arbitrary

number n of states which are available to the cell in its evolution.
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1.8 n-state semi-Mariov process: PR(oz) as all.

Theorem. Let P be an n X n irreducible transition matrix with

zero trace. Let

P-k(a) = asymptotic fraction of cells in state k, k=1,2,...,n,

where

[+ ]
a:j e Mac(u) =
0O

Bl

s G the equivalent cell life distribution.

n 1]
My = le Py 3 fo udFkJ(u), k=1,2,...,n, vhere P = (pk,j)
Ik
n
< !tk >1r;=l satisfy n’k >0, k=1,2,...,n, kzl“k": 1, and for

= (nl,na,...,ﬂn) ; #=xnP,

Then, as ado s

Proof.

"

= s where
j [1-G(y) Je Vay
0

qk(y) = Plcell at age y is in state k].
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Letting o )0

j:qk(y)dy

B_-— p-
j [1-G(y) lay
o

‘X

For G,, G, continuous distribution functions on [0, =) with

1’ 72
G (0) = G2(0) = 0, it is immediate that

-]; (6 ()-G; * G,(¥)ldy =J; udGy(u) .

Hence
) oo 1]
(r) Ty
g (y)dy = 3 P =
JL k rol n nk uk wn
where
(r) a cell considered as a Markov chain hits]|cell born
nrhk = Fstate k at rth step without hitting at ]
mitotic (nth) state oth step

See Chung [2], pp. W3-4k, k9,

Hence
- X i
fo [1-G(y) lay N kgl M
and
o
Pk - nﬂk = '
2

The theorem is proved.
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Two observations are in order. The quantity ;E*uk is interpreted
n

as the expected visiting time to state k before mitosis, the nth state

(2].

We write Pk, for =0, as

= Iik' .
.t n nlpk
Jék My

x

n oot
The quantity -i;i is then the expected time spent in states
JFk

other than k Dbefore returning to k.
[+4]
The theorem holds for a countable infinity of states, if X mu <w,
k=0
where state O 1s the mitotic state. This form for Bk yields

Smith's theorem 5 [7] for our model.

1.9 Convergence in quadratic mean and pairwise correlstion.

To conclude Part I, we investigate the asymptotic behavior of the
rendom variables

Zg(t)

E[zR t

for the general semi-~Markov model, which includes the sequence of

WR(t) = R=l,2,o-.,n

states model as a special case.

Theorem. Let m> 1, and h"(1l) < ». In the semi-Markov model,
WR(t)—-)WR s R=1,2,...,n,

a non-degenerate random variable, in quadratic mean.
The pairwise correlations satisfy

%imm p(WR(‘t), Ws(t)) = p(WR,WS) =1, R,S8=1,2,...n.
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Furthermore, WS=WR a.e.

Sketch of Proof. See Part IT for a similar proof carried out in

complete detail. Major steps are given here.

[+ ]

Let 6 (s,t) = 3 Plz(t)=y]s’
Jj=0
Let PR(t) = Plcell in state R at 1]
Let G(t) = equivalent 1life distribution of the cell.
Then

GR(s,t) =8 PR(t) + l-G(t)-PR(t)
t
+f h(GR(s,t-u))dG(u)
0]
By previous methods, as +t — e, since

aGR(s,t)
E[ZR(t)] = -

g=1 "’
ct
E[ZR(t)] ~ nge

where @ satisfies

Lme'de(u) =

g~

and

f P (w)e au
0

m fowue-a%(}(u)




Further
5 BEGR(s,t)
E[ZR(t)] = ——a—'g—

2
S s=1

and we obtain, as shown in Part II,

E[Zi(t)] ~ n.ﬁ Ae0E
where
®
n" (1) f e ™ 56(uw)
A= <
1l-m f e-amldG(u)
0
Define
Gpleys8p0t) = 3 Plzy (8)=3 Z(t)=klejsh
3, k=0
Then
Gpls)58,0t) = 8P () + 8,Pg(t)+1-G(t)-P; (t)-P(t)
%
: j; B(Gy (8,5, t-u) JaG(w) .
Since >
7,07 (0] = g2
E[Z, (¢)2_{t)] =
1182510 %, 3% g a1
we obtain

20t
E[Zl(t)ZR(t)] ~ n,n Ae
This suffices to show that

%ff“m p (W (t),W(t)) =1
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Define

GR(sl,sz,t;,"r) = E‘ P[ZR(t)=J; ,zR(t+r)=k]s:3Ls§ .

J,&=0
Then
GR(sl,sa,t,T) = slsefh(t+1) + 1-G(t+7)-Ph(t+r)
t
+f0 h(Gy (s, , 8, t-u,7))a0(n)
t+T
+ sy j; h(GR(l,sa,t+T-u,O))dG(u) .
Since 2
d GR(sl,sa,t,T)
E[ZR(t)ZR(t+T)] = asl 332 I
1 2"
we obtain
2at+at

E[ZR(t)ZR(tﬂ')] ~ ng Ae

which suffices to show that

B 2 —
':ll:-imm B[V (£)-W(t+7)]% = 0

and hence Mh(t) —9“% , & random varisble, in quadratic mean. Also
Var{WR] = A-1 > 0, by [3], Ch. 6, sect. 19, so that Wy 4s non-
degenerate.

That

lm p(W (t), W () = p(W, W) =1

mey be obtained by the methods of Part II. Since E[Wﬁ] = 1, E[W2]

Wh = Wi a.e., R=1,2,...,n.
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PART II - TOTAL NUMBEK OF BIRTHS, N(t)

The basic model may be any of those previously considered, since
we will now work only with the lifetime distribution function of the
entire cell, denoted as before by G(t) = Plcell lives for age < t].
We wish to study the total number of cells born by t, denoted by
N(t). See Kendall [4], [5] for early results in special cases.

To facilitate computations, we introduce the following variation

on the basic model, as indicated by the figure.

A proliferating cell of the type considered in previous models,
denoted "type 2", with life distribution G(t), divides into other
“type 2" cells, whose number is determined by the generating function
h(s), h'(l) =m > 1. However, instead of considering that the original
cell disappears on division as before, we suppose it is replaced by one
"type 1" cell of infinite lifetime. Throughout we assume that at
t = 0 we initiate the cell growth process with one "type 2" cell.

All generating functions set up are conditioned on this fact.

2.1 m(t), Var[N(t)]

Let Z,(t) = number of type 1 cells at ¢t

1l

1}

Zz(t) number of type 2 cells at t .
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Then Zl(t)+ze(t) = N(t) = total number of type 2 cell births by t.

m (t) = E[Z) ()] , my(t) = ElZ,(t)] , m(t) = E[N(t)] .

Define
(2]

G(sy,8,t) = 3 Pz, (t)=J; Ze(t)=k]sisla‘

J,k=0
Then
t
Glagmp0t) = 8,(1-6()) + 5y [ 0(Gloy 0 beu))ac(u) -
0
Since
oG(s,,8,,t) oG(s.,8,,t)
“n () e — 2 - ny(o),
1 sl=32=l 2 Sl=82=l
(t) = c(t) ft (t-u)ac(u)
= A +m tT=-u un
m (t) - o ™
t
me(t) = 1-G(t) + m ma(t-u)dG(u)
0
adding,

t
m(t) =1 + mf m(t~u)ac(u) .
0

Assuming h'(1l) = m > 1, by lemma 1 of the appendix, for t large

f mG(u)e-audu

0 ot e ot

ml(t) ~ e = =n

® o 2 [®° -« 1
mf we “%e(w) m af ue”* % ac(u)
0 0

3k



. 00
[1-G(u) Je"%Yau ot
0 ot (m-1)e _ . at
ma(t) ~ - e = = = nye
mf ve *aa(u) noq! ue %Y ac(u)
o Jo
- o .
f e'audu ot
n(t) ~ 0 eat - e - n eat
) £ 20 —at [0)]
mf ®t3a(u) mo j ue"*rac(u)
L <0 _ 0

and

For h"{l) <, we know ([3], Ch. 6, sect. 19, 21) that

Zz(t) - W

no:t 2
Ee

WE(t) =

a random variable, in quadratic mean. In addition, if

* 2
Elw,(t)-W,]7dt < ,
2 2
0

then We(t) —~W, almost surely. We prove a corresponding result for

N(t).

2.2 C(Convergence of Wo(t)'

Theorem. If h'(1l) =m>1, h"(l) <o

W (t) = BE) >W

at o’
ne
o



& random variable, in quadratic mean.

Proof. Define _

t,7) = PIN(t)=J; N(t+'r)=k]s§s‘2‘ :

0<

F(s

<18

38n»
1’72 <k

Then

t t+T
F(s),8,,t,7) = slsa[joh(F(sl,se,t-u,r))dG(u) +ft h(K(s,, t+r-u))

aG(u)+1-G{t+r }]

where
0

K(s,t) = 3 PIN(t)=31s? .
§=1

We wish to find

2
0 F(sl,se,t,r)
asl 382

s l=32=l

M,(t,7) = E[N(t)N(t+s)] =

Performing the indicated differentiations,

t+r t
m(t+r-u)dc(u) + mj n(t-u)dc(u)
0

Me(t,'r) =1 + mj

0

t t
+ B"(1) J; a(trr-2a(e-ao() + m) (b, 7)a0(w)

Using the method of proof of theorem 18.1 of [3], Ch. 6, for t large,

"2 -
noh"(l)j e "G (u)
2at+ar
iy (8,7) ~ = ¢ .
1-m f e'eaudG(u)
— 0

Now we can compute



n B[V (t+1)-1 ()1 = 1t 25 E[Nz(tw) ON(6)N(t+e) | Nz(t)] .

I o o p e2<a:(t+'r) ea(t+'r)+at c2at
® ~2qu
n -
n" (1) fo 20 g5 (y) 2otran
= o P2 e |t 0 e
1-mj e dg(u) &
0

Blr

fm e 2Ma(u) < /me'audg(u) =
0 -0

Hence, L2 completeness shows that

N(t
LA (t) = - W
noe

in quadrstic mean. The theorem is proved.

The first two moments of Wo are obtained.

E[W_] = lim E[N—(t-L] -1

t—w [n eat
(e}

h" (l)f e-aaudG(u)
_ 0

E(W) = lim E[-I“-s(ggct] - _
toe lne 1- f e'aa“hG(u)
O
[h" (1)+m] f e 2% 46 (u)-1
Var[Wo] = 0 > 0 by theorem 19.1 of [3],

[=4] -2a
l-mf e ““Yac(n)
0 Ch. 6.

For completeness we state theorem 21.1 of [3], Ch. 6, and its

corcllary, which hold here.
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Theorem. For m > 1, h"(1) <w , G not a lattice distribution, and

LNE[wo(t)-wo]edt <o,

then Wo(t) - W almost surely.

Corollary. For m > 1, h'(1) <w, G'(t) = g(t) and such that
700
J (g(t))Pat <w for some p>1,
0
then Wo(t) - VW _ almost surely.

2.3 Correlation between Wo and W2.

We now wish to find the correlation between the random varisbles
W-o and W’2.
Recgll that
G(e,,8,,t) = ; %—o Plz, (t)=3; Z,(t)=k]se,
y k=

satisfies
t
G(s,,8,,t)=8,(1-G(t)) + Sljo h(G(s,,s,,t-u)dG(u)) .

Since

2
Is) G(sl, se,t)
asl 352

)

E{z, (£)2,(t)] =

81782

2
o G(sl’SE’t)

2
1

n

Blz, (+)1% =

M, (8)

2] =3

1782

2
0 G(s.,,8,,%)
2 l) 2)
82 81—82-—




we obtain the following integral equations.
t it o t
— - " - -
Mll(t) = 2mJ'O ml(t u)dG{u) + h (l)JO ml(t u)dG(u) + m A Mll(t u)dG(u)

£ t
M22(t) = h"(l)fo mg(t-u)dG(u) + m[o Mez(t-u)dG(u)

t t
Mp(8) = m) my(t-u)ac(a) + " (1) fo m, (t-w)m, (6-u)dG(u)

t
(t-u)ac(u) .
+mf0 M,y w)aG(u

The method of theorem 18.1 of [3], Ch. 6, yields, for t large,

N -

o]
h" (1) nif e-aaudG(u)
0 e2at

M, (£) ~

1-m f me-zaudG(u)
Jo

e -

Fh" (1) ng f we"aa"ac;(u)
M22 (t) ~ = 0 e
1-m j e-zaudG(u)

2at

v (W, [ e ®ac)
h n.n, A e u 2ot
l-m f e-aaudG(u)

| 0 _J

Since N(t) = Zl(t) + Ze(t) s

M (8) ~




() 112, (t) I-
o(8) = p(z,(6),N(s)) - E[Z, (t)+2,(t) 1[2,(t)] E[Z; (t)+2,(t) JE[Z,(t)]

[ (B0 (5) -2 () 1) (EL22 (1) - (2, (5) ]

Let
Kis,t) = S P(N(t)=3led
then )
K(s,t) = s[1-G(t) +j;th(K(s,t-u))dG(u)] .
For

2
My(t) = E[C(t)] = Kl t)

5 s we obtain
Os

s=1

t t
Ma(t) = 2m[0 m(t-u)dac(u) + h"(l)jo m?'(t-u)dG(u)

t
+m ME(t-u)dG(u) .
0

For t large

nim" (l)—/(;we-eaudG(u)

® 2
1- j e Ya(u)
0

eQQm

M,(t) ~

80 that writing

Mo (6) + Myo(t) = my ()my(t) - ma(t)

o(t) =
(M, (6) - (£)) (M, (£) = w2 (5))
Putting c = [ " a2y
JO

it 11 2
h (l?nlnac +h (l)nec
T-mc e -t

/(nih"(l)c 2)( ngh" (1)e 2)
T Trme . T o/l TIome — " P2

lim p(t) -
t—o o




Since we have assumed all along that G 1is not a lattice distribution,

1"
we mey factor out (Eiéégs -1) > 0 in the expression for p(t). See
[3], Ch- 6, Sect- 19-

Thus

n2(n1+n2)(ﬁl-)£ -1)

131
l-mc

p(t) - =1 .
l)e 2
n2(n1+n2)v 1-mc -1)
We wish to conclude that
Cov[WO(t),Wa(t)] COV[WO,WE]
p(t) = - =1 .
c[wo(t)]o[WE(t)] c{W6]UIWé]
Since
2
E[Wo(t)-wo] -0,
EBlW,(t)-w ]2 -0
2 2 ’
we know that

BIW(5)] »EW]
2 2
Elw,(t)] - Elw,] .
Then it suffices to show that
|Blv, (t)W,(8)] - Elw 1] -0 .
This follows from

Wo (W, (8]0 Wy = W (6D, (6) - W (640 W, (6)-W i
= Wy (£} (w (£)-w,) + w_(w,y(t)-u,) -

We have by the Cauchy-Schwarz inequality



IE['WO(t)Wa(t)—WOWQJIE < E[-Wg(t)]E[Wo(t)-wo]2+E[W§]E[W2(t)-W2]2 -0

since

E[Wi] < e and E[Wg(t)] —>E[WS] <o ,

Hence

p(wo’WE) =1.

Comparison of the first two previously derived moments of Wo
with the corresponding moments of W, given in [3], Ch. 6, sect. 19
shows that they are the same.

Hence

W2 = W_ almost surely.
o

2.4 m(n) in discrete case.

To check some of the results for the means ml(t) and m2(t),
suppose we congider the corresponding discrete case, in which a cell

divides at the end of a unit interval of time.

m
The expected value matrix M = ﬁ%imég) s Wwhere

mij = E[number of cells of type J issuing from a type i cell
at its mitosis]
for Jj,i=1,2

10

M = (l m

1 0
n
m~1 n
Ml m-l m -



L, »r>0
Let G(u) = U(u-1), where U(r) = , and define ¢ > O:
C, r <O

=3 b

o0
L e Mg(u) = e =

and we obtain

Substituting G(u) = U(u-1) into expressions for ml(t), mz(t)
previously derived, and changing t to n, n large,
Kot \

m, (n) ~ o 1n(m)

> from continuous case

m (n) ~ m-l ean
2 m 1n(m) )

m,(n)
752_(1'17 ~ m-1, which checks with the matrix case, in which
1

an
]

m-1

an

2.5 m(t) for m=1, m < 1.

Let
K(s,t) = 3 PIN(t)=j]sI
30
t
K(s,t) = s[(1-G(t) + j h(F (s, t-u) )ac(w) ]
0
m(t) = E[N(t)] = -@Ké—:ﬁl -




For the case mn=l,

t
n(t) =1+ f m(t-u)da{u)
0

and the system 1s mathematically equivalent to a renewal process. For

mild restrictions on G, such as IO“ tdG(t) <= , G(0) =0,

n(t) ~ t

s Lt large .

00
udG(u)
0
See Chapter 7 of Bellman and Cooke [1].

Case m < 1.

t
m(t) =1 + mf m(t-u)dac(u) .
0

By lemms 2 of the appendix, for t—w

l-m

We check these results for cases m=1l, m < 1, by reverting to the

discrete case.

2.6 Convergence and moments of N(t), m < 1,

We briefly treat the case m < 1.
Theorem. Let G be a distribution function,
G(0) = 0.
For m<1,

N(t)T No’ a random variable, a.e.



Proof. ¥t)Tea.e.
Since E[N(t)] = m(t) satisfies

“t
m(t) =1 +m Jo m(t-u)ag(u)

u(t) -é'ii-Tn as t —w, by lemma 2 of the appendix.

Hence N(t) is finite a.e. for all t. After that point t for

which Ze(t) =0 a.e.,

N(t) = N(t+7) <o for a8ll T >0 a.e.
Hence N(t)7 N,» & random variable a.e.

1
E[No] 1

To obtain higher moments of No we assume h(n)(l) <o for

all n=l,2,no- .

Define

K(s,t) = ¥ PIN(t)=31s? .
J=1
From

t
K(s,t) = s[1-G(t) +j h(k(s,t-u))aG(u)]
0

1]}

we cbtain for Ma(t) E[Nz(t)] the equation

M,(t) = om(t)-1 + h" (1) f tme(t-u)dG(u) +m f ‘ Me(t-u)dG(u)
0 )

Claim:

to 1,2
jom (t=u)ac{u) -—>(-]—_-_—m) as toow
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Proof of claim: For 0 <9y <1,

t 7 2 v 2
Io me( t-u)ac(u) = j; n” (t-u)ac(u) +jt7 m-(t-u)ag(u) .

Since m(t)T as tT:
t
j w” (t-u)aG(u) < m (6) [G(+)-G(+7)] - (£=)2[6(4)-6(#)] >0 ,
t7 -

and
t"

u (t=t7 )G (") _gj u® (t-u)da(u) < m°(£)a(t”)
0

which suffices to establish the claim.

Hence
t
My(t) = A(t) + A M, (t-u)dG(u)
vhere
1+m h" (1
A(t) = T + (l-m)% a8 t o

and

l-m l-m (l-m)d (o}

Higher moments are similarly obtained recursively, but no general

form for the generating function of No has been obtained.

2.7 m(n) for m=l, m <1, in discrete case.

For w=1

M=, Wa (D) e

m(n) = ntl ~n for n large.



For m<1

1 0
10
M (l m) [ Mn =
l-mn mn
l-m
n
m(n) =i:$ +mn—> 1%'51 s, 88 DN ,

which checks with the continuous case.

2.8 Moments of N{(t), case m=1.

We consider the asymptotic moments of N(t) for a simple age
dependent branching process with m=l. Two theorems from ILaplace
transform theory will be useful. See Widder [10].

Abelian theorem. If for some ¥ > O

lim m@) = £
toe Y 1-.(7.,_1)
and
g
uls) = j e~*tan(t)
0
then

1im s’u(s) = ¢ .
sl0

Tauberian theorem. If m(t)] is such that

-]
nis) =f e_Stdm(t) converges for R (s) >0
0
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and if for some ¥y >0

lim s'u(s) = ¢
8]0 -

then

1 BB _c
t—-w t’ I’(7+l)

Lemma. Let G be a distribution function, G(0) =0

Let H(t)] satisty

H(t) = £(t) +j:H(t-u)dG(u)

where

(-~}
f udG(u) = m, <o ,
0 G

f£(t) is bounded on every finite interval, and

lim -ﬂil =a .
t—o tn
Then
1 EE) _ 8

P tn+l B (n+l)mG )

Proof. By [3], Ch. 6, appendix, the unique solution bounded on every

finite interval is

t
H(t) = -[o £ (t=u)dM(u)

where

M(u) = EG(n) (u) .
n=0

Denoting the Laplace transform of a function g by E, we obtein



f(s) = ¥s) Hi(s) =‘f(s)[ L ] :
1-G(s)

As s8l0 , a Taylor expansion to the first moment yields

1-G(s) ~ sty

and by the Abelian theorem, as 8l0,

F(a) ~ al' (n+l)

n
8

#(s) - ar(n+l)

m ntl
G [~]

and by the Tauberian theorem

im  H(t) ar (n+1)

a
t b d = .
—> 0 tn+1 mG{'Tn+2) (n+1)m o

We may now obtain asymptotic moments of N(t) for wm=l,

Theorem. If wnm=l,

h(n)(l) <w , n=1,2,...

]

-]
fudG(u) my <,
0

then
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EN(t)] = M (t) , n=l,2,...

M (t) e (b"(1)I

lim =
+t-3 00 t2n—l m(2}n-l

= I Y - 2L
vhere a.l-l, 85= 3 85= 5 a), = 550 25 = 5y’ and the {an} may be

obtained recursively.

Proof. Define

K(s,t) = § PIN(t)=3]s’
j=1

1
K(s,t) = s[1-G(t) + f n(K(s, b=u) )aG(u) ]
0

t
Ml(t) =u(t) =1 +f m(t-u)ag(u} .
0

From Bellman and Coocke [1], pp. 236-239,

lim le—

tow T mG

My(t) = 2[m(t)-1] + h“(l)ftmz(t-u)dG(u) +ftM2(t-u)dG(u)
0 0

t &’ £
f e (t-u)aG(u) = j w° (t-u)ac(u) + f e (t-u)ac(u) for 0 <y < 1.
0 0 .t7’

Wow N(t)T , hence N't)T ana M (¢)] , and
t
j Y n? (t-u)ac(u) < m2(6-67) [6(£)-G(t7) T = o(t")
¢

y
o2 (67 )6(e7) < It n?(t-u)d6(u) < u’ (£)6(t")
0
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so that

t
M (5) = A(s) + L M, (-u)d6(w)

where

lim At) = h“éll .

t->w t2 mG
By the lemms,
M2 (t) hll l
lim = .
t—e0 t3 3 m3
G

The general result follows recursively in the same way. No
genersl formula for the {an] has been obtained.

Note that the result for Mé(t) differs markedly from the renewal
theory case, where h(s) = s, and with the second moment asymptotic to

t2 and the variance asymptotic to t.

2.9 Moments of N(n) in discrete case, for m=1l, m < 1.

The two theorems to be given in this section are limit theoreums
concerning the total number of births in discrete time for cases
m=1 and m < 1. These results are similar to those just given for
continuous time.

A cell living at time n, n=1,2,... will devide at time n+0

into K cells with probability Pys K=0,1,2,... and we let

h(s) = § PKSk » h'(1) = m, and suppose hu)(l) < e
k=0

for £=1,2,... and h"(1) > O.
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Independence as before is assumed., Fach new cell will divide in
accord with h at time (nt+l) + O,

Let N(n) be the total number of births by time n, n=1,2,...
starting with one cell at time O.

Define

K(s,n) = 2 P(N(n)=3]s® , n=1,2,...

1, u>1
By taking G(u) in the equation in continuous

0O, u<l
time ¢, t> 1

K(s,t)

Il

t

s[1-G(t) +jh(K(S,t-u))dG(u)]
0

and getting t=nt+l, we obtain

K(s,n+l) = s h(K(s,n)) .

We proceed to cases m=1 and nm < 1.

To treat the case m=l, we need the following particuler case of
the lemms of Pert IT applied to discrete time.

Corollary 1. Let fT be & function on the positive integers

satisfying, for X —»e», n=1,2,..., and a >0 and

£(k+1) = g(x) + £(K)

lim 5—(-1-{-1 =a .
Ko w Kn

Then, a8 K — oo,
un I e
Ko Kn+1
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Theorem 1. Iet

E[N(n)} = M(n)

E[N (n)] = Mr(n) ,  r=2,3,...

Then if m=1, we have

M{n) = n
and
M (n)
-1
lim _E"'Ir =a [m"(Q))F
n—-w p r= r ’

where the {a.r]:=2 aere the a's in the analogous continuous time
theorem for N{i), m=l,

Proof sketch. From K(s,n+l) = sh(X(s,n)), since

oK(s,n = M(n) ,
ds s=1

M(n+l) =1 + M(n) , m(l) =1
Hence

M(n) =n

M,(nt1) = 2 M(n) + 1" (1) M (n) +4y( n)

By the lemma, since N(n){ implies Nk(n)T implies Mk(n)'r,

M. (n) "
lim —?—-— —1 h—(—ll k=l,2, PP N
T oo n5 3

Continuing in this recursive manner, the result may be established.

The results for the case m < 1 are essentially identical with

those for the contimous case.
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Theorem 2. If m<1l, as n —w,

1
M(n) - -.']_..:;1

Mr(n) b, r=2,3,...

where the <’br >:=2 are the same as in the continucus case, m < 1.

Proof. From K(s,n+l) = sh(K(s,n)) ,

M(n+l) =1 + m M(n) .

1, u>1
We may apply lemma 2 of the appendix for G(u) =
0, u<l
to obtain
1
M(n) T -

M,(n+1) = 2uM(n) + h" (1)} (n) + mdi,(n)

and agaln applying lemma 2 of the appendix,

i _ "(l
M2(n) T [%:;1 + (;l_m)%]

and so on recursively to establish the result.
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PART III - TWO TYPES OF CELLS

3.1 Model I,

This section discusses two models for cell growth in an expanding
population involving the proliferation of two types of cells. In the
first model, a "type 1" cell has a non-lattice life distribution H,
H(O) = 0 and is incapsble of proliferation. At the end of its life
veriod, it 1is absorbed. A "type 2" cell, with non-lattice distribu-
tion G, G(0) = 0 is capable of proliferation. At the end of mitosis
it gives rise to

2 clusters of "type 1" cells - with probability qE
1 cluster of "type 1" cells and a cluster of "type 2" cells - with
probability 2pg

2 clusters of "type 2" cells - with probability p2

where p+q =1, p> 0, ¢ > O, and a cluster of type 2 cells is a
collection of those cells, containing Xk cells with probability Py

k=0,1,.., . Define
s _ k
his) = 3 ns , and h'(l) =m, h"(1l) <o .
k=0

Similarly, a cluster of type 1 cells contalns k type 1 cells with

probability Q and define
< k
b(s) = 3 s ,b'(1) =4
k=0

Each type of cell and cluster forms independently of the state of the

system. The cells are independent of each other. See Kendall [6].
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For h(s) = b(s) = s the process may be represented schematically

fA A

Define, given that at +t=0, the process starts with one newly

as follows

born type 2 cell,

Zl(t) = number of "type 1" cells at ¢
Za(t) = number of "type 2" cells at t
Né(t) = muber of "type 2" cells born by +
Ni(t) = number of "type 1" cells born by t

3,2 E[Zl('t)], E[Ze(t)] .

The first moments of these quantities are obtained for large ¢,
and sre related to the corresponding discrete time case results. A
discussion of convergence in quadratic mean indicates also the asymp-
totic second moments.

Before starting the computations, we note that the "type 2" cells
form a process which is independent of the type 1 cells as follows.

With probability q2 - 0 "type 2" cells are emitted on
division of a "type 2" cell

2pq - 1 cluster of "type 2" cells is emitted

p2 ~ 2 clusters of "type 2" cells are emitted.

The equivalent generating function for the number of new "type 2"

cells created on division of & "type 2" cell 1is
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f(r) = g(h(r))

I‘J.

where g(s) = q2 + 2pas + p282 and h(r) = 3 PJ
J=0

Hence, as done in previous sections, the backward, forward, and
total time distributions and asymptotic mean and variance of the number
of "type 2" cells in a state may be computed, if the type 2 cell pro-
gresses through n states, the kth state 1ife characterized by its dis-~
tribution Fk, k=1,2,...,n. Here G = Fl Hre ok Fn if we desl with the
sequence of states model, and G 1s the equivalent life distribution
of the cell in the semi-Markov case.

Throughout; all generating functions depending on the time are con-

ditioned on the event that at +=0, the process begins with one newly

born cell of type 2 or one of type 1, as will be specified.

Define
G, (s,,8,,t) = J 3 Pl (9= 7, (4)=k [PE 2 2% 15357
G, (81,85,%) = 8, [1-H(¢)] + H(t)
o2
Gy(s,585,t) = 8,(1-G(%)) +fo [4 (G, (51,85, t-u))+2pqb (G, (5,,8,,t-u))
h(G,(s, 48, t-u)) + P07 ( Gy (8,56, t-1) ) JAG(u)
Let s6.( )
G,(8,,8,t
_ _ TPy By
m (t) = B[z, (6)] = 38, 5, =6,=
oG,(s.,8,,t)
- 251252
m2(t) = E[ZE(t)] = 882 sl=32=l
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(4) 2ajt [1-Hft-u) Jac(u) + 2 jt (t-u)ac(a)
= =H{t=-1u u ~-u
m (t) = 29d) o u
or
t
ml(t) = 2qd[G(t) -G » H(t)] + 2pmfo ml(t-u)d(}(u)
t
ma(‘b) = 1-G({t) + 2mm L me(t-u)dG(u) .

To treat the case of an expanding cell population, assume that 2pm > 1,

and we define

00
o 1
a.L e dG(u)—zpm .

Then, for t large, by lemms 1 of the appendix,

2qd fo m[G(u)-(G*H) (u) Je"%au

ml(“c) ~ - e’ =ne
2pm f ue ac(u)
» 0

-

§ 00
j’ [1-G(u) le "y L. L0
m2(t) 129 Lt & _2pm = ne%t
) = 00 - Yo
2pm j ue %™ ag(u) opm | ue *%ac(u)
0 0

5.3 Comparison with discrete case.

We compare these results with those in the discrete case.
let X = number of "type 2" cells emitted from a "type 2" cell on

division.

"type 1" cluster

1
E[X] emitted

E[X] ] P[1 "type 1" cluster emitted] +

it

E[X]0 "type 1" clusters emitted ]

P[0 "type 1" clusters emitted]
E[X]) = 2pgm + p22m = 2pm.
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Let Y = number of "type 1" cells emitted when a "type 2" divides.

E[Y] = a.2pq + 2d.q> = 2qd .

The expectation matrix M is

1 0
2qd 2pm

)

M=

where we assume for simplicity that H = 0, that is, & type 1 cell has

Infinite l1life.

1 0
M = n .
2qa[{ZE=L]  (2pm)”

l, >0
Let G(t) = U(t-1) , U(s) = { -,

Let t correspond to n, the nth step of & discrete process. Thua

the continuous case is changed to the discrete.

R
-

2qd
gpm @ an _gd _an
m (6) ~ my(n) ~ FE T2 B e

m,(t) ~ my(n) ~%ﬂ [1- -é%ﬁ]ean

From the matrix M,

q 2q
ml(n) ~ 2;1(31 (gpm}n = Epmf-l ean

my(n) ~ (2pm)® = ™"
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m, (n) 24
maln) 2pm-1

. The ratics check.

This leads to

3.4 Comparison with results of Snow.

Lemma. The ratio of the components of the left eigenvector cor-
responding to the largest eigenvalue of M is that of the asymptotic
ratio of the mean numbers of "type 1" and "type 2" cells in the contin-

uous case, in which H = 0 [i.e., type 1 cells have infinite life].

That 1s
if (a, BIM = me(a; B)
()
o ™ .
then B NW s G large .
Proof.
1 0
M = (qu 2pm) H )"m.a‘x= 2pm

(o B)M = 2pm(c, B)

Q + 29dP = 2pma

o _ _2qd my (t)

B 2pm-1“‘m2(t) ’

Snow [8] presumably has general results of the type in the lemms,
but for the "lrreducible” case, that is, if M 1s now normalized to
form a transition matrix, it would be irreducible. In the case treated

[Mhere, the stateg of M do not communicate. See also [3], Ch. 5.
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5.5 BN (t)], EIN,()].

Let
Ble,t) = 3 PN, (t)=3]s’
J=0
4
B(s,t) = s[l—G(t)‘i[’ f£(B(s,t-u))dc(u)]
0
where

f(x) = g(h(x)) , g(s) = q? + 2pgs + p’s° and

co

hix) = Y P, X, This has been done in an earlier section. For %
k=0
. fe _-qu 2
large, and «: fO e aG(u) = %5

E[Nz(t)] - 1 eat =n ot

2pmo; J:ue-auac(u)

To find E[Ni(t)], set H = 0, so that Gl(sl,sa,t) =g which

1’
is equivalent to letting a type 1 cell have infinite life.

2qgd
2rm & eat - ot

oo - ol
2pm f ue *Yag(u)
0

B[N, (t)] ~

These results can be checked with the discrete case, and a lemma

like the above proved.
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3.6 Convergence in quadratic mean and asymptotic correlations.

Given h"(l) < w, 2pm > 1, we wish to show that, t—o,

2, (t)
Wi(t) = =i —aWi in gquadratic mean
n1e
Z,(t) ’
We(t) = 5t - W,
2
N, (%) "
Wop(t) = _at = ¥o1
o1
W A "
he(t) = " eat"’ 02
02

where

® au 1
a:foe dG(u)=-é;m-.

The computation of all new generating functions to follow assumes
thet at t = O, the process starts with one cell of type 2.

l,52,1:) and Gé(sl’se’t) stand

for the generating functions which they stood for in the preceeding

We shall let the notations Gi(s

section on two cell types.

Define

B(s,,8,,t,7) = J ‘Ezo PlZ, (t)=1; Zl(t+'r)=k]slsz .

Then

62



t
B(s,,85,t,7) = 1-G(t+7) + j; [qabe(Gl(sl,l,t-u))+2pq.b(Gl(sl,l,t—u))

2

n(B(sy,8p,6-u,7)) + Th° (B(s), 8, -u,7)) JAG(w)

1782
T, 4

+ [a%b216, (5,,1,t+1-u)) + 2pgb (G, (s,,1,t+T-u) Yn(C, (8, 1, t+7-u))
+ 1\82 1182 2\

+ 20 (Gy(s,,1, t41-u)) JaG(u)

Since

2
o B(sl,sz,t,T)
?sl 382

5,=s,=1 Elz, ()2, (t+1)] ,

we find, using the method in theorem 18.1 of [3], Ch. 6, that, for

large t,
r 2 o o) 2 }
2pnlj e O”‘h(}(u) (" (1)+pm~)

0
® 2
1-2pm j; e “ac(u)

20+ T
B[z, (£)2, (t+5)] ~ e

Let

C(sl,sz,t,r) = ; E&O P[Za(t)=J; Ze(t+7)=k]sis§
k=

t
2
c(sl) seJt}T) = 8182[1—G(t+7)] +_L [q. +2Pq. h(c(sl} Sz)t—u)r))

+ P07 (s, 5, 5-u,7)) 1a6(u)

5 22
+ 8 [¢“+2pqh (G, (1,5, ,t+1-u) )+ h(G,(1, s, t+7-u) ) 1aG(u)
1 t 2 2 2 2

2
a C(Slis?_}t}‘r)

Ehl 382

= E[Ze(t)ze(t+1)]

sl=52=1
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and

- -

Epng f “e-ade(u) [h" (1)+pa” ]

0 2at+aT
Ca— e .
1-2pm f e dc(u)
0

E[Z,(t)Z,(t+7)] ~

Let

PIN, (t)=3; Nl(tﬂ)=k]sisla‘

D(s sB :t’T) =
1’72 >0

k>

18

t
D(sl’sg’tﬂ) = 1-G(t+1) +j;) [qaba(slsg) + 2qu(3182)h(D(91’Sg:t-uﬂ))
+ thE(D(sl, By, t-u,7)) JaG(u)

t+r
: ;[ [a%%(s,,)+2pqD (s,) 1 (R(s 5, t+7-1))
t

+ 370" (R(s,, t+7-u) ) 1aG(u)
where

R(s,t) = D(s,1,t,D)

BaD(sl, se,t,'r)
le 352

= B[N, (t)N. (t+r)]
8.=8,=1 1 1
1 _2 .

2 (% -2q 2
2pny, j e” a6 (u) [n" (1) +pm”]
0 e£at+o:r

1-2pm f e-eaudG(u)
0

E[Nl(t)Nl(tﬂ)] ~

Let
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8

H(s ,s.,%t,T) = P[N,(t)=3; N ('t+1‘)=k]sdsk
1" 2 k?_%il 2 2 172

t
2
H(sl,se,t,‘r) = sls2[1-c;(t+-r) + . ) +2pqh(H(sl,s2,t-u,r)
22 )
+ ph(H(s,,8,,t-u,7)) JaG(u)
BT 5 2 2
+ f [a"+2pgh (K(s,, t+7-u) )+p hK(s,, t+7-u) ) JaG(u)
t
vhere we may take
K(s,t) = H(s,1,t,0)

BH(sl,sa,t,T)
le 332

(=81 = E[Né(t)Né(t+T)]

- -
2pn§2 f e %% 4 () [0 (1)+pm°]

(=3
l-2pmuf e 2ou
0

Applying the above formulas, we see that

8

2ot+aT
B[N, ($)N, (t+1) ~ e

EfW, ()4, (t+7)17
E[WE(t)-WE(tH) ]2 -0
E[wOl(t)-wC)l(tﬂ)]e -0

E[WOQ(t)-Woe(t+‘r) ]2 -0

W v
so that W, (t) »W,, W (t) =Wy Wy (£) =W 0, W, (t) ~W ., in quadratic

mean.
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Pairwige correletion among Wi,Wé, 01’“b2'

We explicitly indicate how to find the correlation only between

¥. and Wa. The other five follow similarly.

1
Let’
2 62G2 (s),85,%)
M, (t) = E[z,(¢)] = 5
le sl=52=1
3% (8.,8,,%)
M, (t) = E[Zg(t)] - —2 :aL 2
Bsz sl=32=1
2
0°G,(8,,8.st)
My (£)=dy, (£) = EL2, (8)2,(8)] < o a8,
1 “F2 1752
Let
f e-eaudG(u) =c
0
2 2.
2pn_c[h" (1)+pm"]
Mil(t) o 11_2pmc ezat
21)“2" [8" (1)+pu’] 20t
M£2(t) ~ 1 1-2pme B €
_2pnln2c[h"(l)+pm2] oat
Mi2(t) - L 1-2pme ©

M, () - m ($)my (%)
VO, (6)-n2 (£)) (it (8) - (£))

p(z, (£),2,(¢)) =

2
2pe(h" (1)+pm”) _
n2[ 1-2pmc 1]

p(2,(t),Z2,(t)) - - =1,
e 2pe (n" (1)#pn) _ g

2[ 1-2pme
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since we have the following lemmsa,

Lemma .

" 2
2pe(h"(L)+pm”) 5 o o ,
1-2pme

Proof. Flrst note, by the Cauchy-Schwarz inequality

e =j e-aaudG(u) > [f e dG(u)]2 = ;2
0 0 bpm

2po(n’ ()+pn) _ ) _ cl2pn’(1)+2p"n"+2pm)-1
1-2pme - 1-2pme *

It suffices to show
" 22
c(2ph"{(1)+2pm + 2pm] > 1

or to show

22

2ph"(1) + 2p™m~ + 2pm
55 — > 1
bp™m
or
1
h" (1) ;‘pm tm.
2pm
or
h"(1) + m > pm2

but

h'{1) + m > m? > pm2 , &8

h"(1) is the second factorial moment of h.
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In order to show that

Cov[Wl(t),Wa(t)] _)Covi:wl,wa] .

p (W (£),W,(t)) =
ofw) (t)Jaluy(¢)]  olw, Jolw,]

we use the same reasoning as in the section on total number of births
with one cell type.

2
Since E[Wl(t)-wl] -0
E[W..(£)-W.]° >0
2 2
we have

E[W5 (6)] - Elw.]
2 2

EW,(t)] - ElW,] .

It suffices to show that
IE[Wl(t)W'E(t)-W'lwe]I -0 .
Write
wl(t)we(t)-wlwa = wa(t)[wl(t)-wl] + wl[wz(t)—wal .
By the Cauchy-Schwarz inequality,
B0 (W, (£) 1-Ebr w5112 < EWS(6) B, (6)7,1° + Bbv JEG,(6)4,)7- 0

since

E[Wi] <e gnd E[Wg(t)] veE[Wg] <o .

Hence

All the other five correlations are 1.
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Since
Elw,] = ElW,] = E[W,,] = ElWy,] =1
and, by the previous section,

Va.r[Wl] = Var[We] = Va.r{WOl] = Var[Woe] =

QPj ooe-&xudG(u) [h" (1)+pm+ m]-1

0
® 20m
1-2pm j e “ac(u)
0

>0

Wy =Wy = Wyp = Wyp &8s

z, (n)
- W,

In the discrete case, m > 1, convergence of lim = "
n—o A

& random variable in quadratic mean, is discussed in [3], Ch. 2, for
multiple types k=l,2,...,kb. Here lmax is the largest eigenvalue

of & relevant expectation matrix.

3.7 Model II.

The second model of two cell types to be considered is similar to
the first. Using the same notation as in the previous case, the pro-
cese may be described as follows. At the end of mitosis of a type 2
cell, the progeny may be

1 cluster of "type 1" cells and 1 cluster of "type 2"

cells - with probability g

2 clusters of "type 2" cells - with probability p

ptq=l1.
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In case h(s) = s, b(s) = 8, we may represent the process

schematically as

§s do

q b

3.8 Bz, (+)], ElZy(t)].

Let

Gi(sl’s2’t) = ; §=0 Pz, (t)=J; Z,(t)=k type é]sis

Then

Gl(sl,sz,t) = sl[l-H(t)] + H(t)
t oo
62(81’82’t) = 82[1'G(t)] +;£ [Ph (GE(BI’SE’t-u))

+ Qb(Gl(S 2,t-u))h(Ga(sl,sz,t-u))]dG(u) .

1’8
Assuming an expanding cell population, or m(p+l) > 1,
— ]
qd f [G(w)-GxH (u) ]e"wdu]
0 ot ot

ml(t) ~ o t & = ne
m(p+l) f ue"%%c(u) J
— 0

jw [1-G(u) Je %%y

ma(t) ~ (0] eat =n at

m{p+l) jomue-aud(‘r(u)

where o satisfi N -
es fo e aG(u) 2 D) and so

TO



Al

2 *®  -ou
1 ac(
n(p+ )fo ue u)

5.9 Comparison with discrete cage.

Checking with the discrete case ag before, we obtain

1 0
M=
ad  m(p+l)
1 0] N\
W - .
@ERULL ) ()
and
m, (n) d
mzinf @ ptl)-1l

for both the discrete matrix case and the "discretized" continuousg case.

We thus obtain

Lemma. If
(o, B)M = kmax(a,ﬁ) = m(p+1)(a, B) ,
then
i g (t) .
w(ptl)-1 B~ m2' )’ 7%
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3.10 E[Nl(t)], E[N,(t)].

Let

B(s,t) = J PN, (t)=]s?
J=0

t
B(s,t) = 8[1-G(t)+ | [ph®(B(s,t-u))+qh(B(s,t~u)))ac{u) ]
0

E[Né(t)] ~ = — e noeeom.
m(pt+l)o f ue-audG(u)
4]

To find E[Nl(t)], set H=0, so that Gl(sl,se,t)=sl. With this
change,

aGE(Sl’BE’t)
asl

E[N (t)]= e —
1 3l~32—l

and

H
=

d
E[Nl(t)] ~ mlp+l§ot eat ot

o0 - Yol
m(p+1) fo ne"%%G(u)

5.11 Convergence in gquadratic mean and asymptotic correlations.

The arguments are as in the previous two cell type model.
Altered steps are sketched. As before, we study Wi(t), Wbi(t), i=1,2,

Define

B(s,,8,,t,T) = Plz, (t)=y; 2 (t+1)=k]sjsk
1’52 j,%;O 1 | 12

T2



t
2
B(sl,sa,t,'r) = l—G(t+'r)+jo (ph (B(sl,sa,t-u,‘r)) +

+ qb(Gl(sl,l,t-u))h(B(s 2,t--u,'r)]d(}(u)

1’8

T,
+ g [ph“(G.(5,.,1,t+7-u)) +
1), 2\Fp

+ qb(Gl(sg, 1,t+7-u) )h(GQ(SE’ 1,t+r-u)) JdG(u)

BEB(sl, SE’t’T)
Bz, (0)2 (w1} = —5 75

sl=52=1
2 ., 2at+om
E[Zl(t)Zl(tw)] ~ n, Ae

where ©
[0" (1) [1+p]+2pm° ] f e 2% (u)

0
A=

l-m(p+l) jme-eaud(}(u)
0

Define

Clsy,8p,%,7) = 3 Pl2y(6)=d; Zy(t+7)=k]edey

B
3,%=0 ra
t o2
+ qh(C(sy,85,t-u,7)) JdG(u)

T,
+ Slj (ph (Ge(l, se,tﬂ'-u)) + qh(GE(l,sa,t-i-T-u))]dG(u)
t

2 . 2o0t+ar
2 Ae



o —— p—a - - P,

Define

P[N, (t)=3; N (t"“!')-k]s

D(sl,s 2t,7) =
>0

K > 252

18

t
D(sy,85t,7) = 1-G(t+7)+ A [ph" (D(s}, 8, t~u,7))

+ qb(slsa)h(D(sl, se,t—u,‘r) Ylac{u)

t+7
+f [q‘b(sa)h(D(se,l,tﬂ-u,O))+ph2(D(s2,1,t+‘r-u,O))]dG(u)
t

R 2 2ot+or
ELNl(t)Nl(t+'r)] ~ 05, Ae .
Define
H(s.,s,,t,7) = E PIN,(t)=3; N,(t+7)=k]edsr
1’2t T 2 * T2 1°2

k>3 >1

t
H(sl, se,t,"r)=slse[1-G(t+'r)+fo [pha(H(sl, sz,t-u,'r))+qh(H(sl, sa,t-u,'r) ) JaG(u)

t+7 5
+j [ph (H(sa,l,tﬂ—u,o) )+qh(H(82,l,t+'r-u,O)) Jdg(u)
t

E[N, (t)N,(t+7) ] ~ no, A2OEHOT

02 Ae

These results suffice to show that

E[W, (6)-W, (£+7) 1% >0 11,2
E[W \t) (t+'r)] -0 i=1,2

so that Wi(t) > W, and WOi(t) > W

4 01’ i=1,2, in quadratic mean.

Th



The results also yield that the limiting pairwise correlations

among Wl(t), WE(t)’ WOl(t), and Woe(t) approach 1 as t-®, since

we have
TLemmsa .
2
114
Al = LB (2)[1+p] + 2pm°]e 150
1-m(p+l)e
where
-]
caj e"2de(u) .
0
Proof.

® <om 2 1 2
C>[oe dG(u)] =[m] .

It suffices to show

[0" (1) {1+p] + 2pm® + m(p+1) ] [—rm]® -1 > 0

m| p+l 5
or

2
n"(1) +m > me(;;TI—]-'-)

but
2
" 25 p2Rtl
h'(l) +m>mn >m(p+l).
Since E(W,] = EW,,1=1 1i=1,2
and EW°] = EM2. ] = A 1<),
i o1 *
it follows that
W = W =W =W g&.e.

75



APPENDIX

Lemms, 1. Conaider the equation

t
K(t) = £(t) + mj K(t-u)dac(u)
0

G is a distribution function on (0, «), G(0) = 0, G is not a lattice

distribution, f d1s a known function bounded on every finite interval,

f Pac(u) =

Suppose f(t)e-ateo as t »w, and f(t)e

m>1l., Define a > O:

EY

BIv

“¢% 45 bounded and

integrable in (0, »), then

o0
f f(u‘)e_au du
0 eat

(-]
mf ue™ ™ dag(u)
0

K(t) ~

Lemms 2. In the equation

1
K(t) = £(t) + m f K(-u)ac(u)
0

Suppose m<1l, and G is a distribution function, G(0) = 0. G may
or may not he a lattice distribution. If

lim f£(t) =

t=w
then

K(t) -ai—_(f-a a8 t o® .

These lemmas are from [3], Ch. 6, appendix.
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